Skip to main content
Log in

Carnitine deficiency-induced cardiomyopathy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The results of clinical and animal studies suggest that a short term period of moderate secondary carnitine deficiency, in and of itself, does not have a major effect on the cardiac contractile function, although substrate oxidation may be altered. However, with longer durations of carnitine deficiency, alterations occur within the heart that may result in impaired contractile performance, particularly at high workloads. At this point, the mechanisms responsible for the cardiac depression are uncertain. We hypothesize that the alterations in substrate metabolism produced by the carnitine deficient state results in inadequate ATP production under high workload conditions which result in impaired cardiac contractile performance. Carnitine deficiency may also induce a number of changes in gene expression of key enzymes required for normal cardiac contractile function and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bremer J: Carnitine-metabolism and functions. Physiol Rev 63: 1421–1480, 1983

    Google Scholar 

  2. Neely JR, Morgan HA: Relationship between carbohydrate metabolism and energy balance of heart muscle. Ann Rev Physiol 36: 413–459, 1974

    Google Scholar 

  3. Bieber LL, Emaus R, Valkner K, Farrell S: Possible functions of shortchain and medium-chain carnitine acyltransferases. Fed Proc 41: 2858–2862, 1982

    Google Scholar 

  4. Stanley WC, Lopaschuk GD, Hall JC, McCormack JG: Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions – Potential for pharmacological interventions. Cardiovasc Res 33: 243–257, 1997

    Google Scholar 

  5. Broderick TL, Quinney HA, Barker CC, Lopaschuk GD: Beneficial effect of carnitine on mechanical recovery of rat hearts reperfused after a transient period of global ischemia is accompanied by a stimulation of glucose oxidation. Circ 87: 972–981, 1993

    Google Scholar 

  6. Rebouche CJ, Paulson DJ: Carnitine metabolism and functions in humans. Ann Rev Nutr 6: 41–66, 1986

    Google Scholar 

  7. Tripp ME, Katcher ML, Peters HA, Gilbert EF, Hodach RJ, Shug AL: Systemic carnitine deficiency presenting as familial endocardial fibroelastosis. N Engl J Med 305: 385–390, 1981

    Google Scholar 

  8. Waber LJ, Valle D, Neill C, Di Mauro S, Shug A: Carnitine deficiency presenting as familial cardiomyopathy: A treatable defect in carnitine transport. J Pediat 101: 700–705, 1982

    Google Scholar 

  9. Christensen E, Vikre-Jorgensen J: Six years experience with carnitine supplementation in a patient with an inherited defective carnitine transport system. J Inherit Metab Dis 18: 233–236, 1995

    Google Scholar 

  10. Long CS, Haller RG, Foster DW, McGarry JD: Kinetics of carnitine dependent fatty acid oxidation: Implication for human carnitine deficiency. Neurology 32: 663–666, 1982

    Google Scholar 

  11. Bieber LL: Carnitine. Ann Rev Biochem 57: 261–283, 1988

    Google Scholar 

  12. Van Hinsbergh VWM, Veerkamp JH, VanMoerkerk HTh: Palmitate oxidation by rat skeletal muscle mitochondria. Comparison of polarographic and radiochemical experiments. Arch Biochem Biophys 190: 762–771, 1978

    Google Scholar 

  13. Weis BC, Esser V, Foster DW, McGarry JD: Rat heart expresses two forms of mitochondrial carnitine palmitoyltransferase I. The minor component is identical to the liver enzyme. J Biol Chem 269: 18712–18715, 1994

    Google Scholar 

  14. Xia Y, Buja LM, McMillin JB: Change in expression of heart carnitine palmitoyltransferase I isoforms with electrical stimulation of cultured rat neonatal cardiac myocytes. J Biol Chem 271: 12082––12087, 1996

    Google Scholar 

  15. Weis BC, Cowan AT, Brown N, Foster DW, McGarry JD: Use of a selective inhibitor of liver carnitine palmitoyltransferase I (CPT I) allows quantification of its contribution to total CPT I activity in rat heart. Evidence that the dominant cardiac CPT I isoform is identical to the skeletal muscle enzyme. J Biol Chem 269: 26443–26448, 1994

    Google Scholar 

  16. Paulson DJ, Shug AL: Inhibition of the adenine nucleotide translocator by matrix-localized palmityl-CoA in rat heart mitochondria. Biochim Biophys Acta 766: 70–76, 1984

    Google Scholar 

  17. Wood JM, Bush B, Pitts BJR, Schwartz A: Inhibition of bovine heart Na+,K+-ATPase by palmitylcarnitine and palmityl-CoA. Biochem Biophys Res Commun 74: 677–684, 1977

    Google Scholar 

  18. Clarke SD, Abraham S: Gene expression: Nutrient control of pre-and posttranscriptional events. FASEB J 6: 3146–3152 1992

    Google Scholar 

  19. Dillman WH: Diabetes mellitus induces changes in cardiac myosin of the rat. Diabetes 29: 579–582, 1980

    Google Scholar 

  20. Rupp H, Elimban V, Dhalla NS: Modification of subcellular organelles in pressure overloaded heart by etomoxir, a carnitine palmitoyltransferase I inhibitor. FASEB J 6: 2349–2353, 1992

    Google Scholar 

  21. Rupp H, Wahl R, Hansen M: Influence of diet and carnitine palmitoyl–transferase I inhibition on myosin and sarcoplasmic reticulum. J Appl Physiol 72: 352–360, 1992

    Google Scholar 

  22. Sugden MC, Holness MJ: Interactive regulation of the pyruvate dehydrogenase complex and the carnitine palmitoyltransferase system. FASEB J 8: 54–61, 1994

    Google Scholar 

  23. Gulick T, Cresci S, Caira T, Moore DD, Kelly DP: The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci USA 91: 11012–11016, 1994

    Google Scholar 

  24. Kelly DP, Strauss AW: Inherited cardiomyopathies. N Engl J Med 330: 913–919, 1993

    Google Scholar 

  25. Sack MN, Rader TA, Park S, Bastin J, McCone SA, Kelly DP: Fatty acid oxidation enzymes gene expression is downregulated in the failing heart. Circ 94: 2837–2842, 1996

    Google Scholar 

  26. Breningstall GN: Carnitine deficiency syndromes. Ped Neurol 6: 75–81, 1990

    Google Scholar 

  27. DeVivo DC, Tein I: Primary and secondary disorders of carnitine metabolism. Int Ped 5: 134–141, 1990

    Google Scholar 

  28. Rebouche CJ, Engel AG: Carnitine metabolism and deficiency syndromes. Mayo Clin Proc 58: 533–540, 1983

    Google Scholar 

  29. Tanphaichitr V, Leelehagul P: Carnitine metabolism and human carnitine deficiency. Nutrition 9: 246–254, 1993

    Google Scholar 

  30. Angelini C, Vergani L, Martinuzzi A: Clinical and biochemical aspects of carnitine deficiency and insufficiency: transport defects and inborn errors of b-oxidation. Crit Rev Clin Lab Sci 29: 217–242, 1992

    Google Scholar 

  31. Famularo G, De Simone C: A new era for carnitine. Immunol Today 16: 211–213, 1995

    Google Scholar 

  32. Christensen E: Cardiomyopathy and abnormal carnitine metabolism. J Pediatr 114: 903, 1989

    Google Scholar 

  33. Scholte HR, Rodrigures Pereira R, de Jonge PC, Luyt-Houwin IE, Hedwig M, Verduin M, Ross JD: Primary carnitine deficiency. J Clin Chem Clin Biochem 28: 351–357, 1990

    Google Scholar 

  34. Stanley CA: Carnitine disorders. Adv Pediatr 42: 209–242, 1995

    Google Scholar 

  35. Vikre-Jorgensen J: Cardiomyopathy caused by carnitine deficiency. Ugeskrift for Laeger 155: 3390–3392, 1993

    Google Scholar 

  36. Bennett MJ, Hale DE, Pollitt RJ, Stanley CA, Variend S: Endocardial fibroelastosis and primary carnitine deficiency due to a defect in the plasma membrane carnitine transport [clinical conference]. Clin Cardiol 19: 243–246, 1996

    Google Scholar 

  37. Zales VR, Benson DW Jr: Reversible cardiomyopathy due to carnitine deficiency from renal tubular wasting. Pediat Cardiol 16: 288–292, 1995

    Google Scholar 

  38. Duran M, Loof NE, Ketting D, Dorland L: Secondary carnitine deficiency. J Clin Chem Clin Biochem 28: 359–363, 1990

    Google Scholar 

  39. Stanley CA, Berry GT, Bennett MJ, Willi SM, Treem WR, Hale DE: Renal handling of carnitine in secondary carnitine deficiency disorders. Pediatr Res 34: 89–97, 1993

    Google Scholar 

  40. Chalmers RA, Roe CR, Stacey TE, Hoppel CL: Urinary eccretion of l-carnitine and acylcarnitine by patients with disorder of organic acid metabolism: evidence for secondary insufficiency of L-carnitine. Ped Res 18: 1325–1328, 1984

    Google Scholar 

  41. Roe CR, Millington DS, Maltby DA, Kahler SG, Bohan TP: L-carnitine therapy in isovaleric acidemia. J Clin Invest 74: 2290–2295, 1984

    Google Scholar 

  42. Shapira Y, Gutman A: Muscle carnitine deficiency in patients using valproic acid. J Pediatr 118: 646–649, 1991

    Google Scholar 

  43. Kurczynski TW, Hoppel CL, Goldblatt PJ, Gunning WT: Metabolic studies of carnitine in a child with propionic acidemia. Pediatr Res 26: 63–66, 1989

    Google Scholar 

  44. Roe CR, Millington DS, Maltby DA, Bohan TP, Hoppel CL: L-carnitine enhances excretion of propionyl coenzyme A as propionylcarnitine in propionic acidemia. J Clin Invest 1993

  45. Chalmers RA, Stacey TE, Tracey BM, De Souse C, Roe CR, Millington DS, Hoppel CL: L-carnitine insufficiency in disorders of organic acid metabolism: Response to L-carnitine by patients with methylmalonic aciduria and 3-hydroxy-3-methylglutaric aciduria. J Inher Metab Dis 7(Suppl 2): 109–110, 1984

    Google Scholar 

  46. Ohtani Y, Nishiyama S, Matsuda 1: Renal handling of free and acylcarnitine in secondary carnitine deficiency. Neurology 34: 977–999, 1984

    Google Scholar 

  47. Gahl WA, Bernardini IM, Dalakas MC, Markello TC, Krasnewich DM, Charnas LR: Muscle carnitine repletion by long-term carnitine supplementation in nephropathic cystinosis. Pediatr Res 34: 115–119, 1993

    Google Scholar 

  48. Heinonen OJ, Takala J: Carnitine status during prolonged total parenteral nutrition. J Pediatr 122: 503, 1993

    Google Scholar 

  49. Heinonen OJ, Takala J, Kvist M: Effect of food restriction on tissue carnitine concentration in rats. Clin Nutr 10: 85–90, 1991

    Google Scholar 

  50. Ahmad S, Dasgupta A, Kenny MA: Fatty acid abnormalities in hemodialysis patients: Effect of L-carnitine administration. Kidney Int 36 (Suppl 27): S243–S246, 1989

    Google Scholar 

  51. Ahmad S, Robertson HT, Golper TA, Wolfson M, Kurtin P, Katz LA, Hirschberg R, Nicora R, Ashbrook DW, Kopple JD: Multicenter trial of L-carnitine in maintenance hemodialysis patients. II. Clinical and biochemical effects. Kidney Int 38: 912–918, 1990

    Google Scholar 

  52. Lanza-Jacoby S, Reibel DK: Changes in tissue levels of carnitine during E. coli sepsis in the rat. Circ Shock 24: 29–34, 1988

    Google Scholar 

  53. Regitz V, Bossaller C, Strasser R, Müller M, Shug AL, Fleck E: Metabolic alterations in end-stage and less severe heart failure – Myocardial carnitine decrease. I Clin Chem Clin Biochem 28: 611–617, 1990

    Google Scholar 

  54. Wennberg A, Hyltander A, Sjöberg Å, Arfvidsson B, Sandström R, Wickström I, Lundholm K: Prevalence of carnitine depletion in critically ill patients with undernutrition. Metabolism 41: 165–171, 1992

    Google Scholar 

  55. Paulson DJ, Sanjak M, Shug AL: Carnitine deficiency and the diabetic heart. In: Carter AL (ed). Current Concepts in Carnitine Research. CRC Press, Boca Raton, Florida, 1992, pp 215–230

    Google Scholar 

  56. Castro-Gago M, Camiña F, Rodriguez-Segade S: Carnitine deficiency caused by valproic acid. J Pediatr 120: 496, 1992

    Google Scholar 

  57. Murakami K, Sugimoto T, Nishida N, Kobayashi Y, Kuhara T, Matsumoto I: Abnormal metabolism of carnitine and valproate in a case of acute encephalopathy during chronic valproate therapy. Brain Dev 14: 178–181, 1992

    Google Scholar 

  58. Opala G, Winter S, Vance C, Vance H, Hutchison HT, Linn LS: The effect of valproic acid on plasma carnitine levels. Am J Dis Child 145: 999–1001, 1991

    Google Scholar 

  59. Kossak BD, Schmidt-Sommerfeld E, Schoeller DA, Rinaldo P, Penn D, Tonsgard JH: Impaired fatty acid oxidation in children on valproic acid and the effect of L-carnitine. Neurology 43: 2362–2368, 1993

    Google Scholar 

  60. Holme E, Jodal U, Linstedt S, Nordin I: Effects of pivalic acid-containing prodrugs on carnitine homeostasis and on response to fasting in children. Scand J Clin Lab Invest 52: 361–372, 1992

    Google Scholar 

  61. Rose SJ, Stokes TC, Patel S, Cooper MB, Betteridge D, Payne JE: Carnitine deficiency associated with long-term pivampicillin treatment: The effect of a replacement therapy regime. Postgrad Med J 68: 932–934, 1992

    Google Scholar 

  62. Abrahamsson K, Eriksson BO, Holme E, Jodal U, Lindstedt S, Nordin I: Impaired ketogenesis in carnitine depletion caused by short-term administration of pivalic acid prodrug. Biochem Med Metab Biol 52: 18–21, 1994

    Google Scholar 

  63. Winter SC: Clinical approach to altered metabolism of fatty acid metabolism in the pediatric practice. Discovery International ZT 29101989

  64. Paulson DJ, Shug AL: Tissue specific depletion of L-carnitine in rat heart and skeletal muscle by D-carnitine. Life Sci 28: 2931–2938, 1981

    Google Scholar 

  65. Bianchi PB, Davis AT: Sodium pivalate treatment reduces tissue carnitines and enhances ketosis in rats. J Nutr 121: 2029–2036, 1991

    Google Scholar 

  66. Diep QN, Bohmer T, Skrede S: Formation of pivaloylcarnitine in heart and brown adipose tissue in the rat. Biochim Biophys Acta Gen Subj 1243: 65–70, 1995

    Google Scholar 

  67. El Alaoui-Talibi Z, Landormy S, Loireau A, Moravec J: Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts. Am J Physiol Heart Circ Physiol 262: H1068–H1074, 1992

    Google Scholar 

  68. Whitmer JT: L-carnitine treatment improves cardiac performance and restores high energy phosphate pools in cardiomyopathic Syrian hamster. Circ Res 61: 396–408, 1987

    Google Scholar 

  69. Tsoko M, Beauseigneur F, Gresti J, Niot I, Demarquoy J, Boichot J, Bezard J, Rochette L, Clovet P: Enhancement of activities relative to fatty acid oxidation in the liver of rats depleted of L-carnitine by Dcarnitine and a gamma-butyrobetaine hydroxylase inhibitor. Biochem Pharmacol 49: 1403–1410, 1995

    Google Scholar 

  70. Keene BW, Panciera DP, Atkins CE, Regitz V, Schmidt MJ, Shug AL: Myocardial L-carnitine deficiency in a family of dogs with dilated cardiomyopathy. J Am Vet Med Assoc 198: 647–650, 1991

    Google Scholar 

  71. Horiuchi M, Yoshida H, Kobayashi K, Kuriwaki K, Yoshimine K, Tomomura M, Koizumi T, Nikaido H, Hayakawa J, Kuwajima M, Saheki T: Cardiac hypertrophy in juvenile visceral steatosis (jvs) mice with systemic carnitine deficiency. FEBS Lett 326: 267–271, 1993

    Google Scholar 

  72. Miyagawa J, Kuwajima M, Hanafiusa T, Ozaki K, Fujimura H, Ono A, Venaka R, Narama I, Ove T, Yamamoto K: Mitochondrial abnormalities of muscle tissue in mice with juvenile visceral steatosis associated with systemic carnitine deficiency. Virchows Archiv 426: 271–279, 1995

    Google Scholar 

  73. Uenaka R, Kuwajima M, Ono A, Matsuzawa Y, Hagakawa J, Inohara N, Kagawa Y, Ohta S: Increased expression of carnitine palmityoyltransferase I gene is repressed by administration of L-carnitine in the hearts of carnitine-deficient juvenile visceral steatosis mice. J Biochem 119: 533–540, 1996

    Google Scholar 

  74. Heinonen OJ, Takala J: Experimental carnitine depletion in rats. Clin Nutr 10: 91–96, 1991

    Google Scholar 

  75. Heinonen OJ, Takala J: Moderate carnitine depletion and long-chain fatty acid oxidation, exercise capacity, and nitrogen balance in the rat. Pediatr Res 36: 288–292, 1994

    Google Scholar 

  76. Morris GS, Zhou Q, Wolf SC, DiDomenico DF, Shug AL, Paulson DJ: Sodium pivalate reduces cardiac carnitine content and increases glucose oxidation without affecting cardiac functional capacity. Life Sci 57: 2237–2244, 1995

    Google Scholar 

  77. Broderick TL, Christos SC, Wolf BA, DiDomenico D, Shug AL, Paulson DJ: Fatty acid oxidation and cardiac function in the sodium pivalate model of secondary carnitine deficiency. Metabolism 44: 499–505, 1995

    Google Scholar 

  78. Broderick TL, DiDomenico D, Shug AL, Paulson DJ: L-propionylcarnitine effects on cardiac carnitine content and function in secondary carnitine deficiency. Can J Physiol Pharmacol 73: 509–514, 1995

    Google Scholar 

  79. Broderick TL, Panagakis G, DiDomenico D, Gamble J, Lopaschuk GD, Shug AL, Paulson DJ: L-Carnitine improvement of cardiac function is associated with a stimulation in glucose but not fatty acid metabolism in carnitine-deficient hearts. Cardiovasc Res 30: 815–820, 1995

    Google Scholar 

  80. Holme E, Jacobson CE, Nordin I: Carnitine deficiency induced by pivampicillin and pivmecillinam therpy. Lancet 2: 469–472, 1989

    Google Scholar 

  81. Abrahamsson K, Mellander M, Eriksson BO, Holme E, Jodal V, Jönsson A, Lindstedt S: Transient reduction of human left ventricular mass in carnitine depletion induced by antibiotics containing pivalic acid. Br Heart J 74: 656–659, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulson, D.J. Carnitine deficiency-induced cardiomyopathy. Mol Cell Biochem 180, 33–41 (1998). https://doi.org/10.1023/A:1006826620218

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006826620218

Navigation